Solubility of Mixtures of Hydrogen Sulfide and Carbon Dioxide in Aqueous N-Methyldiethanolamine Solutions[†]

Fang-Yuan Jou, John J. Carroll, Alan E. Mather,' and Frederick D. Otto

Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6

The solubilities of mixtures of hydrogen sulfide and carbon dioxide in a 35 wt % (3.04 kmol/m³) aqueous solution of N-methyldiethanolamine at 40 and 100 °C have been measured. Partial pressures of the acid gases ranged from 0.006 to 101 kPa at 40 °C and from 4 to 530 kPa at 100 °C.

Introduction

Aqueous solutions of alkanolamines are commonly used to strip acid gases (H_2S and CO_2) from streams contaminated with these components. The two most widely used amines are monoethanolamine (MEA) and diethanolamine (DEA). Other amines, which have different physical properties, are also being explored as potential solvents in the stripping processes.

N-Methyldiethanolamine (MDEA) solutions are used for the selective removal of H_2S from gas streams which contain both CO_2 and H_2S . The use of MDEA solutions was first described by Frazier and Kohl (1). In addition to its selectivity, MDEA has a lower enthalpy of reaction with the acid gases and a lower vapor pressure of the solution than primary and secondary amines like MEA and DEA. The smaller enthalpy of reaction leads to lower energy requirements for regeneration while the lower vapor pressure results in smaller losses of solvent by vaporization. Another advantage of MDEA is that it does not degrade readily; that is, it does not react irreversibly to form compounds that accumulate in the solution. Riesenfeld and Brocoff (2) have reviewed the application of MDEA in gas processing and indicated that its use is growing.

Savage et al. (3) have shown that the selectivity of MDEA for H_2S is mainly due to a kinetic effect and that the equilibrium selectivity is small. They obtained data on the simultaneous absorption of H_2S and CO_2 in an MDEA solution. Their results show that the rate of reaction of H_2S was much faster than that for CO_2 . Haimour and Sandall (4) have also measured the rate of reaction of CO_2 in MDEA solutions.

In this paper, new data are presented for the vapor-liquid equilibrium in the system $H_2S-CO_2-MDEA-H_2O$.

Previous Work

Table I summarizes the previous experimental studies for the solubility of carbon dioxide in aqueous solutions of MDEA. Those for hydrogen sulfide are in Table II.

The only other experimental investigation of the solubility of mixtures of H_2S and CO_2 was that of Ho and Eguren (5). They measured the solubility of the mixture at 40 and 100 °C in a 49 wt % MDEA solution.

Experimental Apparatus and Procedure

Well-established methods and equipment were employed to obtain the new data. The experimental apparatus and

Table I.	Experimental	Investigations	of the	Solubility	of
Carbon D	Dioxide in Aque	ous Solutions	of MD	EA	

source	MDEA concn (kmol/m ³)	temp (°C)	CO ₂ partial pressure (kPa)
Jou et al. (8)	2.0	25	0.001-6380
	2.0	40	0.002-6630
	2.0	70	0.002-6020
	2.0	100	0.05-5530
	2.0	120	0.07-5530
	4.28	25	0.004-6370
	4.28	40	0.002-6570
	4.28	70	0.002-6280
	4.28	100	0.04-5590
	4.28	120	0.14-5290
Bhairi (9)	1.0	25	14-2050
	1.73	37.8	19-4970
	1.73	65.6	2 9– 5870
	1.73	115.6	87-6160
	2.0	25	11-4870
	2.0	50	44-4650
Ho and Eguren (5)	2.0	40	3400-5700
0	2.0	50	3300-6500
	4.38	40	0.009-0.9
Austgen et al. (10)	2.0	40	0.006-93
0	4.28	40	0.01-94
MacGregor and Mather (11)	2.0	40	1-3770
Jou et al. (6)	3.04	40	0.004-100
	3.04	100	1.0-262
Shen and Li (12)	2.6	40	1.2-2000
/	2.6	60	1.1-2000
	2.6	80	1.7-1200
	2.6	100	3.0-1900

procedure are the same as those detailed in Jou et al. (6). Thus, the experiment will only be described here briefly.

Basically, the apparatus consisted of an equilibrium cell equipped with large windows such that its contents could be easily observed. A pump was used to circulate a portion of the vapor from the top of the cell into the bottom and thus the liquid phase. The cell and the pump were housed in a temperature-controlled air bath. The pressure in the cell was measured using Heise gauges, which had been calibrated against a dead-weight gauge. The gauges have an accuracy of $\pm 0.1\%$ of full-scale span. The temperature was monitored by using an iron-constant thermocouple. The temperature of the experimental fluids was measured to better than 0.5 °C.

Samples were taken of both phases. The vapor phase was analyzed using gas chromatography. Liquid samples were withdrawn from the equilibrium cell into a vessel containing 1 kmol/m³ NaOH, thus converting free dissolved acid gas into the involatile ionic species. The CO_2 content in an aliquot of the liquid sample was determined by adding excess 0.1

^{*} To whom correspondence should be addressed.

[†] The data in this paper were included as part of a paper presented at the AIChE Annual Meeting, Miami Beach, FL, November 1986.

Table II.	Experimental Investigations of the Solubility of
	Sulfide in Aqueous Solutions of MDEA

source	MDEA concn (kmol/m ³)	temp (°C)	H ₂ S partial pressure (kPa)
Jou et al. (8)	1.0	25	0.006-1960
	1.0	40	0.002-2730
	1.0	70	0.002-5030
	1.0	100	0.09-5890
	1.0	120	0.05-5230
	2.0	40	0.003-2260
	2.0	100	0.75-1550
	4.28	25	0.006-1960
	4.28	40	0.003-2800
	4.28	70	0.001-4990
	4.28	100	0.04-5840
	4.28	120	0.34-5230
Bhairi (9)	1.0	25	16 - 1280
	1.73	37.8	14-1360
	1.73	65.6	13-1540
	1.73	115.6	35-1270
MacGregor and Mather (11)	2.0	40	0.52-1600
Jou et al. (6)	3.04	40	0.002-313
x -7	3.04	100	0.55-302
	4.39	40	0.06-5.9

kmol/m³ BaCl₂ to precipitate the carbonate as BaCO₃. The precipitate was titrated with standardized 0.1 kmol/m³ HCl. The H₂S content in an aliquot of the sample was determined by reacting the liquid with acidified 0.1 kmol/m³ I₂. The unreacted I₂ was back-titrated with 0.1 kmol/m³ Na₂S₂O₃. The experimental error in the solution loading is estimated to be better than 3% in the range studied.

The MDEA was obtained from Aldrich and is 99+% pure. The H₂S is Matheson CP Grade (99.6+% pure), and the CO₂ was supplied by Linde (99.99+% pure). These components were used without further purification. The water was laboratory distilled. Certified solutions of iodine and sodium thiosulfate, which were used in the iodometric titrations, were obtained from Fisher Scientific. The iodine was 0.1000 \pm 0.0005 kmol/m³, and the thiosulfate was 0.1000 \pm 0.0002 kmol/m³.

Results

The measured solubilities for various mixtures of hydrogen sulfide and carbon dioxide in 35 wt % MDEA at 40 °C are presented in Table III. At this temperature the H₂S partial pressures were from 0.3 to 101 kPa and the CO₂ partial pressures from 0.006 to 101 kPa. The measured solubilities at 100 °C are listed in Table IV. At 100 °C, the partial pressure

Table III. Solubility of H₂S + CO₂ Mixtures in 35 wt % MDEA Solution at 40 °C

partial pressure (kPa)		mole ratio in liquid (mol/mol)		partial pressure (kPa)		mole ratio in liquid (mol/mol)	
H ₂ S	CO ₂	H ₂ S/MDEA	CO ₂ /MDEA	H_2S	CO2	H ₂ S/MDEA	CO ₂ /MDEA
3.70	23.9	0.0769	0.523	10.19	0.719	0.366	0.0205
2.45	15.1	0.0678	0.399	9.70	1.099	0.353	0.0307
2.51	11.0	0.0784	0.316	10.46	1.207	0.355	0.0318
0.122	0.976	0.0161	0.00813	10.42	1.618	0.352	0.0388
0.258	0.919	0.0356	0.0726	10.92	3.271	0.339	0.0775
8.38	0.0361	0.448	0.00101	11.56	2.824	0.358	0.0673
2.07	0.014	0.146	0.00061	10.85	3.417	0.343	0.0836
4.30	0.00621	0.215	0.00044	11.25	4.213	0.341	0.102
1.61	0.0151	0.143	0.00076	16.97	14.53	0.355	0.249
1.06	0.0174	0.104	0.00077	18.72	19.09	0.331	0.291
0.734	0.0188	0.0847	0.00129	17.46	20.46	0.310	0.310
0.437	0.0144	0.0605	0.00074	15.33	14.88	0.321	0.260
0.348	0.0727	0.0535	0.00668	16.68	13.17	0.346	0.226
0.415	0.0796	0.064	0.00819	13.23	8.695	0.338	0.168
1.24	0.120	0.103	0.00659	2.71	0.457	0.200	0.0273
1.15	0.0498	0.108	0.00248	3.16	0.719	0.197	0.0324
10.4	0.228	0.36	0.00654	3.85	1.35	0.204	0.0533
10.4	0.193	0.49	0.00680	5.00	2.16	0.236	0.0756
12.9		0.699		5.14	2.16	0.230	0.0908
48.9	0.14		0.00179	0.14	2.07	0.230	0.0908
76.6	0.264	0.811	0.00259	4.50	3.19	0.214	0.112
100.0	0.262	0.888	0.00086	5.19	3.95	0.219	0.127
97.1	0.661	0.873	0.00452	5.47	5.44	0.209	0.164
98.0	2.50	0.873	0.0114	4.41	5.45	0.193	0.178
5.12	1.05	0.266	0.047	5.84	7.81	0.209	0.218
59.1	1.02	0.746	0.0126	6.01	9.34	0.208	0.252
86.6	9.4	0.815	0.0489	4.90	9.42	0.177	0.270
68.8	33.8	0.650	0.194	6.50	9.51	0.222	0.242
31.8	70.2	0.304	0.516	4.91	7.65	0.192	0.237
13. 9	88.8	0.127	0.649	3.32	4.61	0.149	0.199
6.34	97.4	0.0863	0.758	3.91	4.17	0.161	0.184
1.21	33.7	0.049	0.588	0.139	28.7	0.00351	0.594
0.644	18.1	0.0406	0.455	0.609	28.9	0.0118	0.5 9 1
0.587	9.08	0.0553	0.375	4.49	39.0	0.0623	0.612
2.09	3.43	0.160	0.154	4.17	21.7	0.0836	0.506
7.88	2.16	0.341	0.0958	2.81	14.3	0.076	0.42
53.4	1.65	0.715	0.0201	8.12	31.9	0.117	0.539
101.0	0.0978	0.882	0.0007	4.99	24.1	0.0947	0.537
71.3	0.154	0.805	0.00144	2.92	16.9	0.0752	0.498
27.5	0.0153	0.583	0.00021	1.06	7.55	0.0473	0.342
6.51	0.00506	0.303	0.00017	1.52	9.43	0.0584	0.349
2. 9 6	0.02790	0.194	0.00118	3.46	20.3	0.0865	0.599
0.233	0.01030	0.047	0.00093	7.68	91.5	0.0702	0.709
0.0641	0.00559	0.0241	0.00118	5.92	89.7	0.0525	0.679
0.0323	0.0227	0.0167	0.00554	3.28	53.3	0.0435	0.658
0.0401	0.111	0.0166	0.021	2.00	33.7	0.0369	0.556
0.743	101.0	0.0101	0.788				

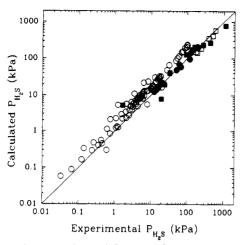


Figure 1. A comparison of the partial pressure of hydrogen sulfide predicted with the Deshmukh-Mather correlation and the experimental values for mixtures of hydrogen sulfide and carbon dioxide (this work, (O) 40 °C, (D) 100 °C; Ho and Eguren (5), (•) 40 °C, (•) 100 °C).

Table IV. Solubility of H₂S + CO₂ Mixtures in 35 wt % MDEA Solution at 100 °C

partial pressure (kPa)		mole ratio in li	o in liquid (mol/mol)		
H_2S	CO ₂	H ₂ S/MDEA	CO ₂ /MDEA		
20.3	3.84	0.147	0.0078		
12.2	5.54	0.105	0.016		
60.2	6.00	0.268	0.006		
15.8	6.65	0.118	0.02		
126.0	7.13	0.386	0.0035		
12.4	72.8	0.075	0.098		
50.4	76.1	0.193	0.077		
61.8	125	0.213	0.111		
16.9	1 96	0.079	0.172		
14.0	225	0.060	0.191		
67.0	257	0.178	0.172		
196	281	0.367	0.150		
190	306	0.365	0.161		
22.9	367	0.071	0.235		
118	529	0.210	0.244		

of H_2S ranged from 12 to 200 kPa and the CO_2 partial pressure from 4 to 530 kPa.

The experimental data for mixtures were then compared with predictions using the Deshmukh-Mather correlation (6, 7). Using the experimental loadings, the equilibrium partial pressures of hydrogen sulfide and carbon dioxide were

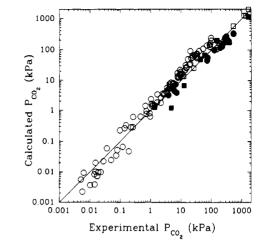


Figure 2. A comparison of the partial pressure of carbon dioxide predicted with the Deshmukh-Mather correlation and the experimental values for mixtures of carbon dioxide and hydrogen sulfide (this work, (O) 40 °C, (\Box) 100 °C; Ho and Eguren (5), (●) 40 °C, (■) 100 °C).

predicted. Figure 1 shows the predicted H₂S partial pressure versus the experimental values. Figure 2 is a similar plot for CO_2 . The values of Ho and Eguren (5) are in agreement with the present work and with the predictions of the model.

Literature Cited

- Frazier, H. D.; Kohl, A. L. Ind. Eng. Chem. 1950, 42, 2288.
 Riesenfeld, F. C.; Brocoff, J. C. Oil Gas J. 1986, 84 (39), 61.
 Savage, D. W.; Funk, E. W.; Yu, W. C.; Astarita, G. Ind. Eng. Chem.
- Savage, D. W., Funk, E. W., Tu, W. C., Astarita, G. Ind. Eng. Chem.
 Fundam. 1986, 25, 326.
 Haimour, N.; Sandall, O. C. Chem. Eng. Sci. 1984, 39, 1791.
 Ho, B. S.; Eguren, R. R. AIChE Spring National Meeting, New Orleans, 1988; Paper No. 69a. (5)
- (6) Jou, F.-Y.; Carroll, J. J.; Mather, A. E.; Otto, F. D. Submitted for publication in Can. J. Chem. Eng.
 (7) Deshmukh, R. D.; Mather, A. E. Chem. Eng. Sci. 1981, 36, 355.
 (8) Jou, F.-Y.; Mather, A. E.; Otto, F. D. Ind. End. Chem. Process Des.
- Dev. 1982, 21, 539
- (9) Bhairi, A. M. Ph.D. Dissertation, University of Oklahoma, Stillwater, OK, 1984.
- (10) Austgen, D. M.; Rochelle, G. T.; Chen, C.-C. Ind. Eng. Chem. Res. 1991, 30, 543.
- (11) MacGregor, R. J.; Mather, A. E. Can. J. Chem. Eng. 1991, 69, 1357.
- (12) Shen, K.-P.; Li, M.-H. J. Chem. Eng. Data 1992, 37, 96.

Received for review March 30, 1992. Accepted August 13, 1992. We are grateful to Exxon Research and Engineering, Linden, NJ, for financial support of this research.